Review Quiz 2

Instructions. You have 20 minutes to complete this review quiz. You <u>may</u> use your calculator. You may not use any other materials. Put your answers on the separate answer form provided.

- 1. The tangent vector to the curve $\vec{r}(t) = \langle 2t, \sin t, \cos t \rangle$ at $t = \pi$ is:
 - (a) $(2\pi, -\pi, 0)$
 - (b) (2, -1, 0)
 - (c) (2,0,1)
 - (d) $(2\pi, 0, 1)$
 - (e) $(2\pi, -1, 0)$

2. What is $\vec{r}(1)$, given $\vec{r}'(t) = t^2 \vec{i} + t^3 \vec{j}$ and the initial condition $\vec{r}(0) = \vec{i}$?

- (a) $\frac{1}{3}\vec{i} + \frac{1}{4}\vec{j}$ (b) $\frac{4}{3}\vec{i} + \frac{1}{4}\vec{j}$ (c) $\frac{2}{3}\vec{i} + \frac{1}{4}\vec{j}$
- (d) $\frac{4}{3}\vec{i} + \frac{3}{4}\vec{j}$
- (e) $\frac{1}{3}\vec{i} + \frac{3}{4}\vec{j}$

3. Which one of the listed vector-valued functions defines a circle?

(a) $\vec{r}(t) = \langle 3\cos(2t), 3\sin(2t), 4 \rangle$ (b) $\vec{r}(t) = \langle 3\cos(2t), 4\sin(2t), 0 \rangle$ (c) $\vec{r}(t) = \langle 3\cos(t), 3\sin(t), 4t \rangle$ (d) $\vec{r}(t) = \langle 3\cos(t), 4\sin(t), 0 \rangle$ (e) $\vec{r}(t) = \langle 3\cos^2(t), 3\sin^2(t), 4t \rangle$

4. The two lines

 $\vec{r}_1(t) = \langle 1 + 4t, 2 + 5t, 3 + 6t \rangle$ and $\vec{r}_2(t) = \langle -6 + 7t, -6 + 8t, -6 + 9t \rangle$

intersect at the point (1, 2, 3). Which one of the listed vectors is perpendicular to the plane that contains both lines?

(a) $\langle 1, 2, 3 \rangle \times \langle -6, -6, -6 \rangle$ (b) $\langle 1, 2, 3 \rangle \times \langle 7, 8, 9 \rangle$ (c) $\langle 4, 5, 6 \rangle \times \langle -6, -6, -6 \rangle$ (d) $\langle 1, 2, 3 \rangle \times \langle 4, 5, 6 \rangle$ (e) $\langle 4, 5, 6 \rangle \times \langle 7, 8, 9 \rangle$

5. Find the length of the curve $\vec{r}(t) = \langle \sin(t), \cos(t), t\sqrt{3} \rangle$ from t = 0 to t = 10.

- (a) $10 + 50\sqrt{t}$ (b) $\cos(10) + \sin(10) + 10\sqrt{3}$ (c) $10 + 10\sqrt{3}$ (d) 10(c) 20
- (e) 20